Arithmetical closures of a hierarchy of purellordings under AD

In ZFC: The are for many "(ake propulties) of subsite of the reals in confid countersymptes.

Example: « Leses que measurability

, perfect set property

· Brine property (A hes Bake property iff

JUSRope s.l. ADU is negre)

Question Can un avoid these contracting "Complexity" of sets considered.

Pass from R to ω^{ω} (Base space). $\omega^{\omega} \cong R \backslash Q$.

Continuous fetions; vo my just those functions for s.t. then is a fet. of wew move s.t.

(1) $\forall t, s \in U^{<\sigma} \mid t \in S \implies \sigma_{f}(t) \in \sigma_{f}(s)$.

(2) Yxev: Ling Lh(o(xth)) = 0.

() Yxeu: f(x) = Uor(x1,)

If un replace (2) by (2'):

(2') X. Y X E C L ((((X ()) = 4

the ve get the Lipschitz fets.

Def! A,B = win; the

$$A \leq_{W} B$$
 : $\Longrightarrow \exists f(w) \to w' \text{ continuous s.6.}$
 $\forall x \in w' \quad x \in A \iff f(x) \in B.$
 $A = L B$: $\iff \exists g! = 11 - \text{ Lipsclite s.6.}$
 $X \in A \iff g(x) \in B.$

Consider partial orders

 $\begin{pmatrix} P(w') / = \\ = \\ \end{pmatrix} = w \end{pmatrix}$, Wadge homely

 $\begin{pmatrix} P(w') / = \\ = \\ \end{pmatrix} = w \end{pmatrix}$, Lipschtz hieraly

What com we say about the structure of the Wadge Lamely? In ZFC: Not much useful.

Granes and Determinacy

Let $A \subseteq \omega \cup The G(A)$ is the following game of two players playing natural number at each thin:

I x. x2 X4

I x, X3

T vils (>> <x; lieu> GA

I virs otherse.

Def. A U.S. of for I is G(A) is a map

o: wew set. I always vis G(A)

when reneting to a partial play of player I

with playing o(s) thought the metal.

$$\begin{bmatrix} \mathcal{I} \sigma(\phi) & \sigma(\langle x_0 \rangle) & \sigma(\langle x_0, x_0 \rangle) \\ \mathbb{I} & x_0 & X_1 \end{bmatrix}$$

A set A is determined iff either I or I has a u.s. it G(A).

BD expresses that all all Boul sets are determined

PD express that all projeture sets are determed

AD expresses that all sets are determined.

Lenner A E B (=>) I has awisi (Gi (A)B).

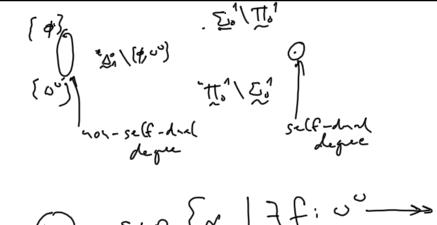
Gu (A,B) is the save gove as Gu (A,B) of that Physe II can pass, but loss if she dresh't play natural unabour infactuly of ten. lemai A EUB (=>) II has a u.s. in Gu (A,B)

I = P(G) is called a Thm (Vadge's Lemma). boldfree positelies iff Tis a boldfree porteless. It cloud under Ev. If evy A & T is determined, then we have for any A, Bel: $A \leq_{\omega} B \quad \forall \quad \omega \setminus B \leq_{\varepsilon} A$ Proofi Assure I does 't une Gu (A, B). So I has a U. s. o : (Assure that I o(4) o((x,)) o((x,1P>) -> y \underline{T} X_{o} P $X_{1} \longrightarrow X$ TI dost prss be XEA COX X BOX SULL NO. So in Gi (u"\B,A) let I players fillows: $\begin{array}{cccc}
\uparrow & \sigma(\phi) & \sigma(\kappa, \gamma) & \longrightarrow \gamma
\end{array}$ YEACHX6 WJ B.

Thm (Martin-Mork).

Assure AD+ abstof close (DCCR)]. $(P(u^{o})/=_{U} = (P(u^{o})/_{=_{U}} =$

ZF+AC+BD, ZF+AD+ACU(R)



$$\Theta = \sup \{ x \mid \exists f: 0 \longrightarrow \alpha \}$$

 $ZFC \vdash \Theta = (276)^{t}$